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ABSTRACT. We show that the complete intersection V = V (2, 3) ⊆ P5 of a quadric
and a cubic in 5-dimensional projective space defined over a field k, of char. "= 2, 3, is
unirational over this field k itself if moreover V has a point p rational over k and if one of
the two planes through p on the quadric is also rational over k.

1. Introduction

In 1912 Enriques [1] showed that the complete intersection V (2, 3) ⊆ P5 of a quadric
and a cubic in 5-dimensional projective space (the cubic complex) is unirational. In En-
riques proof the base field is not explicitly mentioned, but it is implicitly assumed to be
the complex field. In 1938 Morin [3] remarked, without proof, that the irrationalities in-
troduced in Enriques proof depend only from the determination of one point and of one of
the two families of 2-planes of the quadric through the V (2, 3). He needed this in order to
prove that the generic quintic hypersurface V (5) ⊆ Pr in r-dimensional projective space
is unirational as soon as r ≥ 17. In this paper we give a proof in details of Morin’s remark.
In doing this we follow closely Enriques construction, our only contribution being to fully
explain and justify his statements. In a forthcoming paper we will apply this result in order
to clarify, in the same spirit, Morin’s theorem on the quintic.

2. The Main Theorem

We are interested in the field over which the variety is unirational. Recall that a variety is
k-unirational, or unirational over k, if it is unirational and if moreover the rational dominant
map from the projective space to the variety is defined over the field k itself.

Theorem 2.1. (Enriques) Let V = V3(3, 2) = C ∩Q ⊂ P5 be defined over a field k (char.
k %= 2, 3) with the quadric Q and V itself non-singular.
Assume moreover that
1) ∃ p0 ∈ V (k) (i.e. a point rational over k);
2) one 2-plane Λ′ on Q through p0 is also defined over k.
Then V is k-unirational.
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Remark 2.2. a) If the assumptions 1) and 2) are not satisfied then of course a finite exten-
sion of k suffices.
b) Note that 1) and 2) are precisely the conditions used by Morin.

Proof.
First consider the quadric Q = Q4 = V4(2) ⊂ P5. Let the projective coordinates in P5 be
(x0, x1, x2, y0, y1, y2). We can assume that:
p0 = (1, 0, ..., 0),
Λ′ is given by y0 = y1 = y2 = 0.
Then by a projective transformation of coordinates over k we can arrange that the equation
of Q is given by

(1) x0y0 + x1y1 + x2y2 = 0

(See for istance [2], page 226.)
Note that the tangent space to Q in p0, the Tp0(Q), is given by y0 = 0.

Lemma 2.3. Let Q4 ⊂ P5 be given by (1). Let p = (1, a1, a2, b0, b1, b2) be an arbitrary
point on Q.
Then there are two 1-dimensional families W ′(p),W ′′(p) of 2-planes on Q through p and
W ′(p) (resp. W ′′(p)) are rational over K = k(p).

Proof.
Let H∞ := {x0 = 0} and Q∞

3 = Q4 ∩H∞; this is a quadric which is in fact a cone with
vertex (0, 0, 0, 1, 0, 0) over the quadric surface Q2(p0) with equation

(2) x1y1 + x2y2 = 0

in H∞ ∩ Tp0(Q) = {x0 = y0 = 0}.
On Q2(p0) we have two ∞1-families of lines. Now consider the tangent space Tp(Q4) in
p to Q4. It has as equation (over K = k(p))

(3) b0x0 + b1x1 + b2x2 + y0 + a1y1 + a2y2 = 0.

Consider the quadric surface Q2(p) in H∞ ∩ Tp(Q4) ∩ Q4 = Q∞
3 ∩ Tp(Q4); it has

equations (x0 = 0) + (3) + (2) and carries two 1-dim. families F′,F′′ of lines given by the
equations x0 = 0 and (3) and:
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(4)

{
y2 = λx1

y1 = −λx2

resp.

{
x2 = µx1

y1 = −µy2

the two families W ′(p),W ′′(p) of 2-planes on Q4 through p are given as spans

Λ′λ(p) = 〈p, l′λ〉, l′λ ∈ F′ resp. Λ′′µ(p) = 〈p, l′′µ〉, l′′µ ∈ F′′

and they have equations (3) + (4).
Therefore W ′(p)−

∼
− − > P1, over K = k(p), (resp. W ′′(p)−

∼
− − > P1, over

K = k(p)), via the parameter λ (resp. µ); hence they are rational curves, rational over
their field of definition K = k(p).

Starting now with p0 ∈ V one constructs a rational curve, say A(p0) on V as follows:
first take the family W ′(p0) of 2-planes on Q4 through p0, next consider in each Λ′λ(p0)
of W ′(p0) the cubic curve Bλ(p0) = Λ′λ(p0) ∩ C and then take the ”third” point Rλ(p0)
of the intersection of Bλ(p0) with the tangent line to Bλ(p0) in p0. In this way one gets,
starting with p0, first an “abstract” curve

(5) A∗(p0) = {Rλ(p0);λ}−
∼
− − > P1 over k(p0) = k

and a morphism ϕ0 : A∗(p0) −→ V defined over k(p0) = k, by ϕ0(λ) = Rλ(p0), giving
the “concrete” curve ϕ0(A∗(p0)) =: A(p0) ⊂ V (again rational over k(p0) = k).

Now repeat the construction: take on A(p0) the generic point p1 = Rλ(p0) (i.e. λ
transcendental over k) and construct A∗(p1) and A(p1). Let

S∗(p0) := S∗ := {A∗(p)|p ∈ A∗(p0)}−
∼
− − > P2 over k (here we use Lemma 2.3)

and we have a morphism ϕ1 : S∗ −→ V ; put S = Im(ϕ1) ⊂ V . So S is the Zariski
closure over k of the point Rλ1(p1) in V with λ1 transcendental over k(λ) with p1 =
Rλ1(p0), with λ transcendental over k.
Repeat the construction once more by taking p2 = Rλ1(p1) and let

V ∗(p0) := V ∗ = {A∗(p)|p ∈ S∗(p0)}−
∼
− − > P3

over k (we use again Lemma 2.3; see Remark 2.4 below) and ϕ2 : V ∗ −→ V and put
∼
V = Im(ϕ2) ⊂ V all over k. Clearly

∼
V is unirational over k.

Claim.
∼
V = V i.e. ϕ2 is surjective.
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From this claim follows then immediately the theorem.

Remark 2.4. Of course we have used Lemma 2.3 because when we repeat the construction
we get instead of (5)

(6) A∗(p1) = {Rλ1(p0);λ1}−
∼
− − > P1

over k(λ) = k(p1) by the lemma and this we need for the rationality (over k) of S∗; similar
for V ∗.

Proof of the claim.

Step 1 S = Imϕ1 is a surface.

Proof. S is the Zariski closure of Rλ1(p1) over k, i.e. the Zariski closure over k of the
curve A(p1) = ImA∗(p1) (which is a curve over k(p1)). Assume to the contrary that S is
only a curve; then it is the curve A(p1) itself.
In order to see that this leads to a contradiction we need first:

Lemma 2.5. p0 ∈ A(p0) and is a multiple point (of multiplicity at least 4).

Proof. We return to the notations in Lemma 2.3 and we “compute” the point Rλ(p0) ∈
Λ′λ(p0) of the curve A(p0).
In Λ′λ(p0) we can use as non-homogeneous coordinates x1 and x2 and y2 = λx1, y1 =
−λx2.
On the other hand let

(7) f(x1, x2, y0, y1, y2) = 0

be the non-homogeneous equation of the cubic C, then the equation of the cubic curve
C ∩ Λ′λ(p0) = Bλ(p0) has the form

(8) f(x1, x2, 0,−λx2, λx1) =
= l(x1, x2,−λx2, λx1) + q(x1, x2,−λx2, λx1) + c(x1, x2,−λx2, λx1) = 0

where l, q and c are linear, quadratic and cubic respectively with coefficients in k. (No
constant term because p0 ∈ C ∩ Λ′λ(p0)). We can put:

l(x1, x2,−λx2, λx1) = (α1 + λβ1)x1 + (α2 + λβ2)x2

(with α1, α2, β1, β2 in k); (α1 +λβ1)x1 +(α2 +λβ2)x2 = 0 is the equation of the tangent
line of C ∩ Λ′λ(p0) in p0.
Hence we find the intersection points with the tangent line in p0 by substituting
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x2 = −α1 + β1λ

α2 + β2λ
x1

in (8 ) which finally gives

0 = q(x1,−
α1 + β1λ

α2 + β2λ
x1,+λ

α1 + β1λ

α2 + β2λ
x1, λx1) + c(...)

This gives

x2
1q
∗(λ) + x3

1c
∗(λ) = 0

where q∗(λ) is non-homogeneous of degree 4 in λ and c∗(λ) is non-homogeneous of de-
gree 6 in λ, which has as solutions:
2 times x1 = 0 (i.e. the tangency point p0 counted twice) and

(9) x1 = −q∗(λ)
c∗(λ)

which finally gives the point Rλ(p0) we are looking for. Now we get Rλ(p0) = p0 itself if

(10) q∗(λ) = 0,

i.e. for 4 values of λ. This means that p0 ∈ A(p0) and it is infact a 4-multiple point; which
we see if we intersect A(p0) with a general linear space

L(x1, x2, y0, y1, y2) = 0

through p0. By substituing (9) in L = 0 we get from the homogeneous L the equation for
λ as follows

q∗(λ)L(...λ...) = 0.

So we get p0 4-times from (10) and Lemma (2.5) is proved.

Returning to the proof of Step 1 (i.e. S is a surface) we have that in case S is a curve it must
be the curve A(p1) because the Zariski closure over k(p1) is already A(p1) (i.e. already a
curve).
However now from Lemma 2.5 (applied to p1, and over the field K = k(p1)) it follows
that p1 ∈ A(p1). However then we must have

(11) A(p1) = A(p0)

because the Zariski closure of p1 over k is A(p0) and if p1 ∈ A(p1), this Zariski closure
over k is in the Zariski closure of Rλ1(p1) = p2 over k.
Hence S = A(p1) = A(p0), but this is impossible because p1 is a multiple point on A(p1)
by Lemma 2.5 and generic on A(p0). This is a contradiction, hence S is a surface.
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Step 2
∼
V⊆ V is a threefold, i.e.

∼
V = V .

Proof. Let P ∈ V be a generic point. Now we want to find a point R ∈ S such that
P ∈ A(R) (because

∼
V =

⋃
R∈S A(R)).

Let Γ(P ) = union of 2-planes on Q4 through P . Clearly Γ(P ) ⊂ Q4 and Γ(P ) is a
3-dimensional subvariety on Q4. By Lefschetz hyperplane theorem

Z - H2(Pr) - H2(Q4)
hence Γ(P ) is, as cohomological class, a (positive) multiple of the hyperplane section
hence S ∩ Γ(P ) = D(P ) is a curve on Q4 (and hence a curve on S ⊂ V ). On the
other hand let PP (C) be the polar variety (in P5) of the point P of the cubic C4. Then
D(P ) ∩PP (C) %= ∅, and for R ∈ D(P ) ∩PP (C) we have that A(R) passes through P .
This completes the proof.
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